Near-Optimal Bayesian Ambiguity Sets for 3 Distributionally Robust Optimization 4
نویسنده
چکیده
We propose a Bayesian framework for assessing the relative strengths of data-driven ambiguity sets in distributionally robust optimization (DRO) when the underlying distribution is defined by a finite-dimensional parameter. The key idea is to measure the relative size between a candidate ambiguity set and a specific asymptotically optimal set. As the amount of data grows large, this asymptotically optimal set is the smallest convex ambiguity set that satisfies a novel Bayesian robustness guarantee that we introduce. This guarantee is defined with respect to a given class of constraints and is a Bayesian analog of more common frequentist feasibility guarantees from the DRO literature. Using this framework, we prove that many popular existing ambiguity sets are significantly larger than the asymptotically optimal set for constraints that are concave in the ambiguity. By contrast, we construct new ambiguity sets that are tractable, satisfy our Bayesian robustness guarantee and are at most a small, constant factor larger than the asymptotically optimal set; we call these sets Bayesian near-optimal. We further prove that asymptotically, solutions to DRO models with our Bayesian near-optimal sets enjoy strong frequentist robustness properties, despite their smaller size. Finally, our framework yields guidelines for practitioners selecting between competing ambiguity set proposals in DRO. Computational evidence in portfolio allocation using real and simulated data confirms that our framework, although motivated by asymptotic analysis in a Bayesian setting, provides practical insight into the performance of various DRO models with finite data under frequentist assumptions.
منابع مشابه
Near-Optimal Bayesian Ambiguity Sets for Distributionally Robust Optimization
We propose a Bayesian framework for assessing the relative strengths of data-driven ambiguity sets in distributionally robust optimization (DRO) when the underlying distribution is defined by a finite-dimensional parameter. The key idea is to measure the relative size between a candidate ambiguity set and a specific, asymptotically optimal set. This asymptotically optimal set is provably the sm...
متن کاملNear-Optimal Ambiguity Sets for Distributionally Robust Optimization
We propose a novel, Bayesian framework for assessing the relative strengths of data-driven ambiguity sets in distributionally robust optimization (DRO). The key idea is to measure the relative size between a candidate ambiguity set and an asymptotically optimal set as the amount of data grows large. This asymptotically optimal set is provably the smallest convex ambiguity set that satisfies a s...
متن کاملDistributionally Robust Optimization for Sequential Decision Making
The distributionally robust Markov Decision Process approach has been proposed in the literature, where the goal is to seek a distributionally robust policy that achieves the maximal expected total reward under the most adversarial joint distribution of uncertain parameters. In this paper, we study distributionally robust MDP where ambiguity sets for uncertain parameters are of a format that ca...
متن کاملDistributionally Robust Convex Optimization
Distributionally robust optimization is a paradigm for decision-making under uncertaintywhere the uncertain problem data is governed by a probability distribution that is itself subjectto uncertainty. The distribution is then assumed to belong to an ambiguity set comprising alldistributions that are compatible with the decision maker’s prior information. In this paper,we propose...
متن کاملDistributionally Robust Optimization with Infinitely Constrained Ambiguity Sets
We consider a distributionally robust optimization problem where the ambiguity set of probability distributions is characterized by a tractable conic representable support set and expectation constraints. Specifically, we propose and motivate a new class of infinitely constrained ambiguity sets in which the number of expectation constraints could potentially be infinite. We show how the infinit...
متن کامل